edexcel

Mark Scheme (Results)

June 2014

International GCE Chemistry (6CH05/01R)

Abstract

Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038328*
All the material in this publication is copyright
© Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	C		1

Question Number	Correct Answer	Reject	Mark
2	A		1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	A		1

Question Number	Correct Answer	Reject	Mark
$5(\mathrm{a})$	C		1
$5(\mathrm{~b})$	B		1

Question Number	Correct Answer	Reject	Mark
6	A		1

Question Number	Correct Answer	Reject	Mark
7	B		1

Question Number	Correct Answer	Reject	Mark
8	D		1

Question Number	Correct Answer	Reject	Mark
9	A		1

Question Number	Correct Answer	Reject	Mark
10	D		1

Question Number	Correct Answer	Reject	Mark
11	B		1

Question Number	Correct Answer	Reject	Mark
12	B		1

Question Number	Correct Answer	Reject	Mark
13	B		1

Question Number	Correct Answer	Reject	Mark
14	D		1

Question Number	Correct Answer	Reject	Mark
15	C		1

Question Number	Correct Answer	Reject	Mark
16	A		1

Question Number	Correct Answer	Reject	Mark
17	C		1

Question Number	Correct Answer	Reject	Mark
18	B		1

Question Number	Correct Answer	Reject	Mark
19	B		1

Section B

Question Number	Acceptable Answers	Reject	Mark
$20(\mathrm{a})(\mathrm{i})$	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{(-)}$ $1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR}+4 \mathrm{H}^{+}+4 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{O}_{2}+$ ALLOW Reversible arrows Equations in other direction Electrons subtracted on LHS of first equation Multiples Ignore state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
20	$1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$	Equation in the wrong direction, even with (a)(ii)	1
	OR^{2+} $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{Fe}^{2+} \rightarrow 4 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$		
	ALLOW Multiples Reversible arrows sign		
	Ignore state symbols even if incorrect No TE from 20(a)(i)		

Question Number	Acceptable Answers	Reject	Mark
$20(\mathrm{~b})(\mathrm{i})$	$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}$ $\rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$		1
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
20 (b)(ii)	(Pale) pink	Purple / mauve	1

Question Number	Acceptable Answers	Reject	Mark
(b) (iii)	$\begin{aligned} \text { Amount of } \mathrm{MnO}_{4}^{-} & =24.90 \times 0.0195 \times 10^{-3} \\ & =4.8555 \times 10^{-4}(\mathrm{~mol})^{*} \end{aligned}$		5
	$\begin{aligned} \text { Amount of } \mathrm{Fe}^{2+} & =\text { answer } * \times 5 \\ \text { in } 25 \mathrm{~cm}^{3} & =4.8555 \times 10^{-4} \times 5 \\ & =2.42775 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$		
	$\begin{align*} & \text { So in } 250 \mathrm{~cm}^{3}=2.42775 \times 10^{-2}(\mathrm{~mol}) \tag{1}\\ & \left(\mathrm{M}_{\mathrm{r}}\left(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right)=277.9\right) \end{align*}$		
	ROUTE 1 (via moles)		
	Amount of Fe^{2+} used to prepare the solution $\begin{equation*} =6.90 / 277.9=2.4829 \times 10^{-2}(\mathrm{~mol}) \tag{1} \end{equation*}$		
	EITHER		
	$\begin{align*} & \% \text { of } \mathrm{Fe}^{2+} \text { remaining at titration } \\ & =100 \times 2.42775 \times 10^{-2} / 2.4829 \times 10^{-2} \\ & =97.7785(\%) \tag{1} \end{align*}$		
	\% Oxidized $=100-97.7785=2.221(\%) \quad(1)$		
	OR		
	Amount oxidized $\begin{align*} & =2.4829 \times 10^{-2}-2.42775 \times 10^{-2} \\ & =5.516 \times 10^{-4}(\mathrm{~mol}) \tag{1} \end{align*}$		
	$\begin{align*} & \text { \% Oxidized } \\ & =5.516 \times 10^{-4} \times 100 / 2.4829 \times 10^{-2} \\ & =2.221(\%) \tag{1} \end{align*}$		
	ROUTE 2 (via mass)		
	$\begin{align*} \text { mass from titration } & =2.42775 \times 10^{-2} \times 277.9 \\ & =6.7467(\mathrm{~g}) \tag{1} \end{align*}$		
	$\begin{align*} & \% \text { of } \mathrm{Fe}^{2+} \text { remaining at titration } \\ & =100 \times 6.7467 / 6.9 \\ & =97.7785(\%) \tag{1} \end{align*}$		
	$\begin{equation*} \% \text { Oxidized }=100-97.7785=2.221 \text { (\%) } \tag{1} \end{equation*}$		
	Ignore SF except 1 SF unless justified in b(iv)		
	Correct answer no working scores 5 marks		
	90.22% obtained from failure to multiply by 10 scores 4 marks		

Question Number	Acceptable Answers	Reject	Mark
20	3 (significant figures) because all the (b) (iv) data (except $A_{r}(H)$) is given to 3 SF OR 2 (significant figures) because the least precise data $\left(A_{r}(H)\right.$) is 2 SF	1	
	OR 2 (significant figures) because the data is to three figures. After processing only two figures are certain. OR 1 (significant figure) because of the subtraction of two similar numbers.		

Question Number	Acceptable Answers	Reject	Mark
20 (c)(i)	Alkali neutralizes the acid shifting the equilibrium to the left		1
	OR Alkali neutralizes the acid so E value for half cell becomes less (than +2.20 V)	ALLOW 'Reacts with' and 'removes' for 'neutralizes' IGNORE Just "shifts equilibrium to the left"	

Question Number	Acceptable Answers	Reject	Mark
20	$4 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Fe}^{2+}+\mathrm{FeO}_{4}{ }^{2-}+8 \mathrm{H}^{+}$		2
(c)(ii)	OR		
Multiples			
	Species (1) balance (1) Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mar k
20 (c) (iii)	Required half cell value is $E^{0}=(+) 0.77$ $E_{\text {cell }}^{\ominus}=(0.77-2.20=)-1.43 \mathrm{~V}$ ($E_{\text {cell }}$ negative so disproportionation) not feasible TE on calculated negative value of E° cell No TE on positive value for E° cell OR Correct application of anti-clockwise rule e.g. $\begin{array}{r} \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=+0.77 \mathrm{~V} \\ \mathrm{FeO}_{4}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ E^{\ominus}=+2.20 \mathrm{~V} \end{array}$ Equations in order of increasing E^{\ominus} value and arrows shown Anti-clockwise rule shows top reaction moves left and bottom reaction moves right so disproportionation not feasible		2

Total for Question $20=15 \mathrm{marks}$

Question Number	Acceptable Answers	Reject	Mark
21 (a)	(A transition metal) forms ions / oxidation states with partially filled /incomplete d orbital(s) / d sub-shell		1

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 21 \tag{1}\\ (\mathrm{~b})(\mathrm{i}) \end{array}$	$\mathrm{W}=$ chromate(VI) (ion) / $\mathrm{CrO}_{4}{ }^{2-}$ $\mathrm{X}=$ chromium(III) hydroxide $/ \mathrm{Cr}(\mathrm{OH})_{3} /$ $\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ $\mathrm{Y}=$ hexahydroxochromate(III) (ions) / $\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-} /$ tetrahydroxochromate(III) (ions) $/\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$ $Z=$ chromium (II) (ions) $/$ chromium(II) sulfate $/ \mathrm{Cr}^{2+} / \mathrm{Cr}^{2+}(\mathrm{aq}) /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(1)$ ALLOW Name or formula of the compounds IGNORE Omission of square brackets around complexes	Names without oxidation numbers.	4

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 21 \tag{1}\\ \text { (b) (ii) } \end{array}$	A = ethanol / $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ ethanal / $\mathrm{CH}_{3} \mathrm{CHO}$ OR any primary or secondary alcohol or any aldehyde $\begin{equation*} B=\text { zinc } / Z n \tag{1} \end{equation*}$ ALLOW magnesium / Mg $\begin{equation*} C=\text { any acid (name or formula) } \tag{1} \end{equation*}$ IGNORE Omission of (aq) with acid formula Concentration of acid	$\mathrm{CH}_{3} \mathrm{COH}$ Alkali metals Tin / Sn H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$or acid	3

$\left.\begin{array}{|r|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline 21 & \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} & & 1 \\ \text { (b)(iii) } & \mathrm{OR} \\ \text { Multiples } & & \\ & \text { Ignore state symbols even if incorrect }\end{array}\right) \quad$.

Question Number	Acceptable Answers	Reject	Mark
21	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	(1)	
(b)(iv)	Allow multiples Chromium is reduced from (+)6 to (+)3 (1)	3	
	Nitrogen is oxidized from -3 to 0		
	Penalise use of 'changes' / 'increases' / 'decreases' for 'oxidises' or 'reduces' once only		

Question Number	Acceptable Answers	Reject	Mark
21	(chromium(II) ions) oxidized by		1
(b)(v)	(oxygen in the) air ALLOW Just 'oxygen'		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	(A ligand is a) molecule or (negative) ion with a (lone) pair (of electrons)	Positive ion	2
	ALLOW Species / Compound / group (1)		
	Which forms a dative covalent bond with a (central) metal ion or atom (to (form a complex)	ALLOW (if no other marked scored) Electron pair donor	

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 21 \\ \text { (c) }(\mathrm{ii}) \end{array}$	$\begin{aligned} & \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+6 \mathrm{NH}_{3} \\ & \text { ALLOW } \\ & \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+ \\ & \\ & \\ & \\ & \rightarrow \end{aligned} \mathrm{NH}_{3}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}+6 \mathrm{H}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{3+}+4 \mathrm{H}_{2} \mathrm{O} .$ Correct formula for ammine Rest of the equation correct	$\begin{aligned} & \mathrm{Cr}^{3+} \text { and } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
22	$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}{ }^{-}+\mathrm{NO}_{2}{ }^{+}$		
(a)(i)	OR		2
	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}{ }^{-}+\mathrm{NO}_{2}{ }^{+}$		
OR			
2-step version of these involving $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$			
Correct electrophile (1) correct equation(s) (1)			

Question Number	Acceptable Answers	Reject	Mark
22			
(a) (ii)			

Question Number	Acceptable Answers	Reject	Mark
22	Benzene ring in phenol has higher electron density (a)(iii) ALLOW O/ OH donates electron density to (1) the (benzene) ring Because lone pair of electrons on (phenol) oxygen is donated to / overlaps with / interacts with (п (1) electrons of benzene) ring	2	

Question Number	Acceptable Answers	Reject	Mark
22	Substitution may also occur at the 2 / (a) (iv) 6 ring positions / ortho position		1
	ALLOW 'other' / 3/5 / meta ring positions / isomers		
	ALLOW further substitution occurs		
IGNORE By-products formed			

Question Number	Acceptable Answers	Reject	Mark
22	Tin /Sn \& (conc.) hydrochloric acid /	$\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4}$	1
$\mathrm{HCl}(\mathrm{aq})(\mathrm{v})$			
	ALLOW Iron/ Fe for tin ALLOW HCl for $\mathrm{HCl}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
22	Yield $=(100 \times 0.25 \times 0.74 \times 0.85)=$ $(\mathrm{a})(\mathrm{vi})$	16.0 and other rounding errors	1

Question Number	Acceptable Answers	Reject	Mark
$22(\mathrm{~b})(\mathrm{i})$	Insoluble impurities are removed by the hot filtration (1) Soluble impurities are removed by the cold filtration		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 22 \tag{1}\\ \text { (b) (ii) } \end{array}$	$5^{\circ} \mathrm{C} \text { and } 95^{\circ} \mathrm{C}$ Because the lowest proportion (ALLOW 'amount') of paracetamol remains in solution (at the end) IGNORE Just 'greatest difference in temperature'		2

Question Number	Acceptable Answers	Reject	Mark
22	Measure melting temperature	Boiling temperature	1
	ALLOW TLC (with UV light) Ignore	HPLC Must melt over range of $2^{\circ} \mathrm{C}$ Data = data book value	

Question Number	Acceptable Answers	Reject	Mark
$22 \mathrm{c}(\mathrm{i})$	Peak at m/e $=151$ clearly labelled M ALLOW Alternative labels	1	

Question Number	Acceptable Answers		Reject	Mark
22 c (ii)	$43=\left[\mathrm{CH}_{3}-\mathrm{C}_{\backslash}{ }_{\mathrm{O}}\right]^{+}$ ALLOW CONH ${ }^{+}$ Ignore position of charges	$\begin{gathered} \mathrm{OR} \\ \mathrm{CH}_{3} \mathrm{CO}^{+} \\ \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} \end{gathered}$	$\mathrm{C}_{3} \mathrm{H}_{7}^{+}$ uncharged species	1

Question Number	Acceptable Answers	Reject	Mark
$22(\mathrm{~d})$	Limit number of tablets sold OR Give (oral) advice at the point of sale OR Use packs with tablets individually wrapped	Only sell on prescription / doctor's advice Label packet	1
	ALLOW Reduce the (tablet) dose		

Total for Question 22 = 18 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	ethanol has hydrogen bonding (as well as London / dispersion (allow (1) van der Waals) forces)	(1) ethoxyethane has van der Waals forces only / London forces and dipole-dipole forces / mainly London forces so more energy is needed to separate ethanol molecules than ethoxyethane (molecules) ALLOW Hydrogen bonding is stronger (1)	London forces only

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} * 23 \\ \text { (a) (ii) } \end{array}$	Any three of 1. 1 m cars sounds large but represents a small proportion of global cars 2. industrial / domestic power sources produce more man-made CO_{2} 3. Side-effects of alternative anaesthetics 4. Unacceptable not to use anaesthetics 5. Possibility of capturing anaesthetics at point of use 6. Possibility of using a different type of anaesthetic		3

Question Number	Acceptable Answers	Reject	Mark
23	C-F bonds much stronger (than C-H (1) (a)(iii) bonds)	(1) Desflurane remains in the atmosphere for longer (and so act as a greenhouse gas, because it is stable)	

Question Number	Acceptable Answers	Reject	Mark
*23 (b)	(A base is a proton acceptor)		3
	Basicity due to lone pair (of electrons) on the nitrogen(s)		
	Stand Alone Mark		
	EI THER		
	Lone pair of the nitrogen bonded to the benzene ring is much less basic		
	Because lone pair of the nitrogen bonded to the benzene ring interacts with / overlaps the п electrons of the ring		
	OR lone pair of nitrogen bonded to the alkyl groups more basic		
	Because of the positive inductive effect of the (three) alkyl groups (1)		

Question Number	Acceptable Answers	Reject	Mark
23 (c)(i)	Equilibrium mixture is formed (so yield is low)	Just 'yield is low' Reaction does not go to completion	1
ALLOW Reversible reaction IGNORE Rates The ammonium salt of the ester would be formed			

Question Number	Acceptable Answers	Reject	Mark
23			
(c) (ii)	$\mathrm{PCl}_{5} /$ phosphorus(V) chloride / phosphorus pentachloride / $\mathrm{PCl}_{3} /$ phosphorus(III) chloride / phosphorus trichloride / $\mathrm{SOCl}_{2} /$ thionyl dichloride / thionyl chloride (1) Intermediate is 4-aminobenzoyl chloride /		3

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 23 \\ \text { (d) (i) } \end{array}$	 Score a peak fully correct if all associated protons are correctly identified and none is incorrectly identified. All 5 peaks correct (3) Any 3 or 4 correct (2) Any 2 correct (1)		3

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 23 \\ \text { (d) (ii) } \end{array}$	In HPLC there will be one peak for each component of the mixture OR In HPLC there would only be one peak if pure In nmr the peaks due to impurities are more likely to be hidden by peaks of the main compound / indistinguishable from background noise		2

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

